翻訳と辞書
Words near each other
・ Ellis Hillman
・ Ellis Hobbs
・ Ellis Hollins
・ Ellis Hooks
・ Ellis Horowitz
・ Ellis Hotel
・ Ellis Hume-Williams
・ Elliptic cylindrical coordinates
・ Elliptic divisibility sequence
・ Elliptic filter
・ Elliptic flow
・ Elliptic function
・ Elliptic gamma function
・ Elliptic Gauss sum
・ Elliptic geometry
Elliptic hypergeometric series
・ Elliptic integral
・ Elliptic operator
・ Elliptic orbit
・ Elliptic partial differential equation
・ Elliptic pseudoprime
・ Elliptic rational functions
・ Elliptic singularity
・ Elliptic surface
・ Elliptic unit
・ Elliptical distribution
・ Elliptical galaxy
・ Elliptical poetry
・ Elliptical polarization
・ Elliptical Road


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Elliptic hypergeometric series : ウィキペディア英語版
Elliptic hypergeometric series
In mathematics, an elliptic hypergeometric series is a series Σ''c''''n'' such that the ratio
''c''''n''/''c''''n''−1 is an elliptic function of ''n'', analogous to generalized hypergeometric series where the ratio is a rational function of ''n'', and basic hypergeometric series where the ratio is a periodic function of the complex number ''n''. They were introduced by in their study of elliptic 6-j symbols.
For surveys of elliptic hypergeometric series see or .
==Definitions==
The q-Pochhammer symbol is defined by
:\displaystyle(a;q)_n = \prod_^ (1-aq^k)=(1-a)(1-aq)(1-aq^2)\cdots(1-aq^).
:\displaystyle(a_1,a_2,\ldots,a_m;q)_n = (a_1;q)_n (a_2;q)_n \ldots (a_m;q)_n.
The modified Jacobi theta function with argument ''x'' and nome ''p'' is defined by
:\displaystyle \theta(x;p)=(x,p/x;p)_\infty
:\displaystyle \theta(x_1,...,x_m;p)=\theta(x_1;p)...\theta(x_m;p)
The elliptic shifted factorial is defined by
:\displaystyle(a;q,p)_n = \theta(a;p)\theta(aq;p)...\theta(aq^;p)
:\displaystyle(a_1,...,a_m;q,p)_n=(a_1;q,p)_n\cdots(a_m;q,p)_n
The theta hypergeometric series ''r''+1''E''''r'' is defined by
:\displaystyle;b_1,...,b_r;q,p;z) = \sum_^\infty\fracz^n
The very well poised theta hypergeometric series ''r''+1''V''''r'' is defined by
:\displaystyle;q,p;z) = \sum_^\infty\frac\frac(qz)^n
The bilateral theta hypergeometric series ''r''''G''''r'' is defined by
:\displaystyle;b_1,...,b_r;q,p;z) = \sum_^\infty\fracz^n

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Elliptic hypergeometric series」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.